CMB Timeline |
Benda hitam merupakan suatu idealisasi sistem tertutup yang memiliki kesetimbangan termal dengan distribusi intensitas radiasi berbentuk unik dan universal serta hanya bergantung pada temperatur sistem. Benda hitam sempurna tidak pernah eksis di permukaan bumi, namun karena diperkirakan hanya ada satu alam semesta (paling tidak yang berhasil diamati), maka alam semesta yang kita huni ini logis dianggap sebagai benda hitam sempurna.
Adalah Arno Penzias dan Robert Wilson yang telah berjasa menemukan CMB pertamakali pada tahun 1964 dalam bentuk derau (noise) radio yang pada saat itu sangat membingungkan mereka. Kedua ilmuwan tersebut bekerja di laboratorium Bell di New Jersey dengan sebuah teleskop radio ultrasensitif (dipandang saat itu) yang dirancang untuk menerima sinyal dari satelit. Teleskop tersebut menangkap derau yang berasal jauh dari luar angkasa dan, yang paling membingungkan kedua ilmuwan, sinyal tersebut tidak bergantung pada arah fokus teleskop serta tidak bergantung pada waktu pengamatan. Pengukuran yang mereka lakukan mengantar pada kesimpulan bahwa derau tersebut adalah radiasi gelombang mikro dengan panjang gelombang 7 centimeter yang sebenarnya (saat ini) dapat ditangkap oleh televisi biasa jika ditala pada kanal kosong. Untuk penemuan yang sangat menghebohkan ini Penzias dan Wilson dianugrahi hadiah Nobel pada tahun 1978.
Dari sifat isotropiknya wajar jika diyakini bahwa radiasi CMB berasal dari tempat yang sangat jauh di jagad raya. Namun bagaimana para ilmuwan dapat yakin bahwa radiasi ini merupakan fosil dari ledakan maha dahsyat di masa lampau saat alam semesta tercipta?
Lebih dari duapuluh tahun sebelum penemuan CMB, George Gamow, seorang profesor fisika pada George Washington University di Washington D.C., bersama dengan mahasiswanya mengusulkan teori penciptaan alam semesta melalui ledakan yang sangat dahsyat yang mereka sebut sebagai teori Big Bang. Dua orang mahasiswanya, Ralph Alpher dan Robert Herman, pada tahun 1949 kemudian memperkirakan bahwa temperatur rata-rata alam semesta saat ini sebagai konsekuensi dari ledakan besar di masa lalu serta berkembangnya alam semesta pada kisaran 5 derajat Kelvin (minus 268 derajat Celsius). Sayangnya mereka tidak sempat mengusulkan eksperimen dengan menggunakan teleskop radio, meski pada tahun 1963 dua ilmuwan Rusia sempat menanyakan penemuan Ed Ohm yang melaporkan pengukuran derau statik pada tingkat 3 Kelvin. Ohm sendiri tidak mampu memisahkan derau tadi dengan derau yang berasal dari peralatannya.
Lalu bagaimana hubungan antara derau statik gelombang mikro dengan temperatur alam semesta? Inilah kisah sukses fisika selain mekanika kuantum dan mekanika relativistik. Di dalam termodinamika, salah satu cabang fisika yang banyak membahas hubungan antara temperatur dan sifat suatu zat, dikenal hukum Wien yang menyatakan bahwa untuk distribusi radiasi benda hitam perkalian antara panjang gelombang radiasi berintensitas maksimum dengan temperaturnya ekivalen dengan bilangan 0,3. Pengukuran yang dilakukan oleh Penzias dan Wilson tidak persis tepat pada puncak distribusi, namun karena kegigihan dan keyakinan para ilmuwan, pengukuran-pengukuran yang dilakukan selama lebih dari dua dekade, hingga tahun 1991 dengan menggunakan satelit COBE, berhasil mengkonfirmasi distribusi radiasi benda hitam dari CMB dengan akurasi yang sangat mengesankan (lihat gambar 2). Dari distribusi tersebut diperoleh kesimpulan bahwa temperatur alam semesta saat ini, lebih dari 10 milyar tahun setelah Big Bang, adalah 2,726 Kelvin.
Galaksi Andromeda |
Galaksi Andromeda yang merupakan tetangga terdekat galaksi kita, meskipun demikian jarak galaksi ini lebih dari dua juta tahun cahaya dari bumi. Jadi, gambar ini memperlihatkan keadaan galaksi Andromeda lebih dari dua juta tahun yang lalu, jauh sebelum peradaban manusia (yang dikenal) lahir. Galaksi ini pertamakali diamati oleh astronom muslim Persia Abdul Rahman Al-Sufi pada tahun 964 dan dipublikasikan dalam bukunya yang berjudul Kitab al-Kawatib al-Thabit al-Musawwar. Di kalangan kaum orientalis buku ini kemudian lebih dikenal dengan nama The Book of Fixed Stars. Diperkirakan, ada sekitar 10 milyar galaksi yang dapat diamati manusia dari permukaan bumi. Gambar diambil dari Astronomy Picture of the Day, http://antwrp.gsfc.nasa.gov/apod.
Distribusi intensitas radiasi benda hitam dari radiasi CMB (Cosmic Microwave Background) yang berhasil dikonfirmasi secara akurat oleh pengamatan (eksperimen). Garis merah merupakan perhitungan teori untuk temperatur alam semesta rata-rata ekivalen dengan 2,726 Kelvin. Data-data eksperimen diambil dari berbagai sumber. Gambar diambil dari Particle Data Book 2000.
Kronologi Alam Semesta
Distribusi radiasi CMB meyakinkan ilmuwan bahwa jauh di masa lampau telah terjadi kesetimbangan termal di alam semesta. Karena alam semesta terus berkembang hingga kini, masuk akal jika temperatur saat itu diperkirakan sangat tinggi. Para ilmuwan menggunakan hukum-hukum fisika untuk memperkirakan sifat-sifat alam semesta di awal terciptanya, bahkan ekstrapolasi dapat dilakukan hingga mendekati Big Bang. Meski demikian, karena temperatur saat ledakan (pada usia 0 detik) sangat tinggi, menuju nilai tak berhingga, hukum-hukum fisika tidak lagi valid di sini. Dalam matematika keadaan seperti ini dinamakan keadaan singular. Karena matematika tidak dapat sepenuhnya berurusan dengan bilangan tak berhingga, hukum-hukum fisika yang diformulasikan dalam matematika tidak lagi memiliki arti pada kondisi singularitas.
Pada awal terciptanya, alam semesta memiliki ukuran tak berhingga kecil (menuju nol) namun kerapatan materinya sangat tinggi. Baru setelah 10-43 detik (satu per sepuluh juta triliun triliun triliun detik) dari ledakan situasi jagad raya dapat diakses dengan menggunakan teori-teori fisika mutakhir. Diperkirakan pada saat itu temperatur jagad raya mencapai 1032 K atau sepuluh triliun triliun kali lebih tinggi dari temperatur inti matahari. Periode yang dimulai pada usia 0 hingga 10-43 detik dikenal sebagai periode (masa) Planck yang hingga saat ini masih merupakan misteri bagi sains. Para ilmuwan mengimpikan sebuah teori yang dapat menggabungkan teori kuantum dengan teori gravitasi yang diharapkan dapat menguak apa yang terjadi pada masa Planck. Teori yang dinamakan teori gravitasi kuantum ini tentulah sangat sulit mengingat bahwa domain kuantum (daerah dimana efek kuantum dominan) berukuran mikroskopik maksimal sebesar atom atau molekul, sedangkan gaya gravitasi terlihat superior pada skala planet atau galaksi. Meski demikian, usaha ke arah sana sudah banyak dilakukan, misalnya melalui gagasan teori Superstring yang mempostulasikan ruang dengan dimensi 10 atau 26 pada masa Planck. Dimensi-dimensi tersebut berkontraksi setelah masa Planck dan menyisakan hanya 3 dimensi ruang serta satu dimensi waktu saat ini.
Setelah masa Planck alam semesta memasuki masa Penggabungan Agung (Grand Unification). Pada masa ini semua gaya fundamental kecuali gaya gravitasi sama kuatnya. Saat itu alam semesta masih belum berisi apa-apa kecuali sup plasma dengan temperatur lebih dari seratus ribu triliun triliun Kelvin. Periode ini tidak berlangsung lama dan alam semesta mengalami inflasi (pengembangan secara cepat) yang diakhiri dengan pemisahan gaya lemah dan gaya elektromagnetik. Setelah kedua macam gaya tersebut terbedakan, sup plasma panas berubah menjadi sup elektron-quark beserta partikel-partikel pembawa gaya elektrolemah yaitu partikel W dan Z. Partikel-partikel tersebut eksis di alam semesta bersama anti partikel mereka yang jika bergabung akan bertransformasi menjadi radiasi dan sebaliknya radiasi yang ada dapat segera berubah menjadi partikel dan anti-partikel.
Seperseratus ribu detik setelah ledakan temperatur alam semesta turun menjadi 10 triliun Kelvin atau sekitar seribu kali lebih panas dari temperatur pusat matahari. Pada saat ini sup quark berkondensasi menjadi proton dan netron yang merupakan komponen dasar dari nukleus atau inti atom.
Sekitar tiga menit kemudian temperatur terus menurun menjadi satu milyar Kelvin. Energi kinetik yang dihasilkan temperatur sebesar ini sudah tidak mampu lagi menahan gaya nuklir kuat antara proton dan netron yang selanjutnya bergabung menjadi nucleus-nukleus ringan. Proses ini dinamakan sebagai proses nukleosintesis. Proton dan netron bergabung menjadi nukleus deuterium. Deuterium kemudian menangkap sebuah netron membentuk inti tritium. Selanjutnya Tritium bergabung dengan sebuah proton menjadi inti Helium. Proses ini berlanjut terus hingga mencapai inti atom Lithium, namun dengan peluang yang semakin kecil. Dengan demikian teori Big Bang meramalkan kelimpahan Hidrogen dan Helium di dalam alam ini. Konfirmasi ramalan ini diperoleh melalui spektrum bintang-bintang serta galaksi yang dapat diamati dari bumi.
Setelah 3 menit pertama berlalu tidak banyak perubahan yang terjadi kecuali temperatur terus menurun dan alam semesta semakin besar hingga usia jagad raya mencapai 300.000 tahun. Di usia ini alam semesta telah mendingin menjadi 3000 Kelvin, suatu kondisi temperatur yang masih mampu melelehkan kebanyakan logam yang kita kenal. Walaupun temperatur ini masih sangat tinggi, energi kinetik yang dimiliki oleh elektron tidak mampu lagi menahan gaya tarik menarik Coulomb antara elektron dan nukleus. Elektron kemudian bergabung dengan nukleus membentuk atom sehingga seluruh sup plasma tadi akhirnya berubah menjadi atom-atom. Mulai saat ini radiasi tidak lagi bertransformasi menjadi partikel dan anti-partikel, sehingga dikatakan bahwa alam semesta mulai terlihat transparan oleh radiasi. Radiasi foton selanjutnya dapat bergerak bebas bersama mengembangnya alam semesta. Dengan demikian, radiasi CMB yang teramati oleh para ilmuwan adalah fosil radiasi yang berasal dari 300.000 tahun setelah terjadinya Big Bang.
Kronologi alam semesta dalam skala yang tidak linier. Suhu rata-rata alam semesta di bagian kanan gambar diperkirakan dengan menggunakan asumsi sederhana dari persamaan Einstein yang menghasilkan persamaan berbanding terbalik terhadap akar dari usia jagad raya.
Dalam beberapa jam setelah Big Bang pembentukan Helium serta elemen-elemen ringan lainnya berhenti. Alam semesta terus berkembang dan mendingin, namun dibeberapa lokasi yang memiliki kerapatan jauh lebih besar dibandingkan di tempat lain proses pengembangan tersebut agak lambat akibat gaya tarik menarik gravitasi yang relatif lebih besar. Bahkan di tempat-tempat tertentu di alam semesta proses pengembangan berhenti sama sekali dan elemen-elemen yang ada di tempat itu mulai merapat. Karena gaya gravitasi semakin bertambah, gas-gas Hidrogen dan Helium mulai berrotasi untuk mengimbangi tarikan gravitasi. Proses ini selanjutnya melahirkan galaksi-galaksi yang berputar dan memiliki berbagai macam bentuk seperti cakram dan elips, bergantung pada kecepatan rotasi serta gaya gravitasinya.
Selanjutnya gas-gas Hidrogen dan Helium dalam galaksi akan pecah menjadi awan-awan yang lebih kecil dan juga mengalami proses kontraksi karena masing-masing memiliki gaya gravitasi sendiri. Karena atom-atom di dalam awan-awan tersebut saling bertumbukan, tarikan gravitasi mengakibatkan tekanan bertambah dan temperatur terus meningkat yang pada akhirnya sanggup untuk menyulut reaksi nuklir fusi. Reaksi ini akan mengubah Hidrogen menjadi Helium dan berlangsung relatif lama karena persediaan Hidrogen yang berlimpah dan terjadi keseimbangan antara gaya gravitasi dengan gaya ledakan nuklir. Helium kemudian diubah menjadi elemen-elemen yang lebih berat melalui proses fusi hingga menjadi Karbon dan Oksigen. Tahapan selanjutnya menghasilkan bintang-bintang di dalam galaksi yang sebagian meledak sambil melemparkan bahan bakar untuk membentuk bintang-bintang generasi baru. Matahari kita adalah salah satu contoh dari bintang jenis generasi baru ini. Sebagian kecil pecahan ledakan yang mengandung element-elemen lebih berat tidak lagi sanggup untuk menyalakan reaksi fusi nuklir karena elemen-elemennya relatif sudah stabil dan temperaturnya tidak cukup tinggi. Bagian ini akhirnya membentuk planet-planet yang mengorbit bintang seperti bumi kita yang mengorbit matahari.
Pada saat bumi terbentuk, sekitar 5 milyar tahun yang lalu, temperaturnya sangat tinggi dan tidak memiliki atmosfir. Setelah agak lama barulah temperatur bumi menurun dan atmosfir mulai terbentuk karena adanya emisi gas dari batu-batuan di atas permukaan bumi. Namun, atmosfir pertama ini bukanlah atmosfir yang dapat mendukung kehidupan seperti saat ini, karena atmosfir bumi mula-mula terdiri dari gas-gas beracun seperti Hidrogen Sulfida. Untungnya beberapa makhluk primitif yang ada saat itu membutuhkan gas-gas tersebut untuk bernafas dan menghasilkan Oksigen sebagai gas buangan ke permukaan bumi, sehingga permukaan bumi akhirnya dipenuhi oleh gas Oksigen. Karena gas Oksigen sendiri merupakan racun bagi makhluk primitif ini, sebagian besar dari mereka akhirnya punah secara alami, sedangkan sebagian lagi dapat menyesuaikan diri dengan mengkonsumsi Oksigen sebagai kebutuhan hidupnya.
(Dr. Terry Mart, staf pengajar dan peneliti pada Jurusan Fisika FMIPA UI)
Sumber: gifars